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We examine the dynamics of a rotating viscous fluid following an 
abrupt change in the angular velocity of the solid bounding surface. We 
include the effects of a density stratification and compressibility which 
are important in astrophysical objects such as neutron stars. We confirm 
and extend the conclusions of previous studies that stratification restricts 
the Ekman pumping process to a relatively thin layer near the boundary, 
leaving much of the interior fluid unaffected. We find that finite com- 
pressibility further inhibits Ekman pumping by decreasing the extent of 
the pumped layer and by increasing the time for spin-up. Elsewhere we 
show that the results of this paper are important for interpreting the spin 
period discontinuities (“glitches”) observed in rotating neutron stars. 
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1 Introduction 

The approach to solid-body rotation of a fluid insidle a rotating boundary is a fa- 

miliar phenomenon with many applications. For instance, not only can we directly 

observe this phenomenon in the laboratory, but it may also play an important role 

in solar models, neutron stars and other environments. .Greenspan & Howard (1963) 

give a fundamental analysis of the linearized version of this problem by considering 

a rotating axisymmetric container filled with a viscous incompressible fluid. They 

examine behaviour of the fluid after the angular velocity of the container is suddenly 

changed by a small amount. Their solution consists of three distinct, time-separated 

phases: boundary layer formation, Ekman pumping and viscous relaxation. The bulk 

of the fluid spin-up (or. down) occurs through Ekman pumping. Subsequent studies 

of the effect a stratification in density has on the Ekman pumping process (Walin 

1969; Sakurai 1969) chose parameters suited to laboratory conditions, e.g. an incom- 

pressible fluid with a temperature dependent density, and found the Ekman pumping 

process inhibited. 

In this investigation, we are primarily concerned with the possible astrophysical 

applications of the theory of stratified rotating fluids. For instance, when a rotating 

neutron star undergoes a sudden slight increase in its rotational frequency, as ob- 

served in pulsar “glitches”, we can describe the fluid dynamics interior to the crust 

by the theory of rotating fluids. The parameter regime appropriate to this problem 

is sufficiently different from those considered previously to require a reanalysis of the 

dynamical equations and their associated assumptions. For instance, one needs to 

consider the full continuity equation, rather than the incompressible limit. 



2 Ekman pumping 

2.1 Fluid dynamics 

To investigate the response of the fluid in a rotating container, we examine the 

usual, simple model of a cylinder of height 2L, and radius rC* rotating with angular 

velocity 52, (here and elsewhere an asterisk subscript indicates a dimensional variable 

or operator; quantities without this subscript are dimensionless.) When the angular 

velocity of the container is abruptly changed by a small amount. the differential 

rotation between the fluid and the top and bottom of the cylinder generates the 

“Ekman pumping” process. Unlike the previous studies, we do not assume fluid 

incompressibility by allowing for an equation of state which relates the mass-energy 

density p. to the pressure p, and to the composition. For a fluid with a viscosity Y*, . 
the Navier-Stokes equations of motion in a frame rotating with angular velocity CL 

are 

( 
dv* 

p* at + v, - v*v* + 2(S2* x v*) 
* 1 

? -v*p* + p-g* + ;p.v*nt~t + p*v*w*, (1) 

where g, is, 

g, = V,Q* = -g,e,, (2) 

and @, the gravitational potential, r* is the cylindrical radius, and we take CL = %e, 

with e, the unit vector in the z-direction. As long as rC,, is not too large the centrifugal 

acceleration is small compared to the gravitational acceleration and can be neglected. 

More precisely, we assume that finite Froude number effects can be ignored. i.e. 

F s 4Qqr,/g, < 1, where F is the Froude number. 

In the state of rotational equilibrium the velocity is zero in the rotating frame while 

the pressure p,, and density psi are functions only of z,, the direction of gravity, since 

we are neglecting terms of 0rder.F. The Navier-Stokes equation for the equilibrium 
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system is 
d 

ZPS8 = --Ps*g., * (3) 

s We now look at a perturbed system in which the angular velocity is suddenly 

changed by a relatively small amount AR,. The resulting pressure and density are 

P* = Ps*(Z*) + 6p*(r*, z*,t*) (4) 

P* = ps*(z*) + @*(f*, z,, t*) (5) 

To first order in Sp,, 6p, and u*(r,, z., t*) we have 

dv* 
-7-g + 2fLe, x v. = -;v.c - +p* g* + u*v:v*. (6) 

* 

We non-dimensionalize the equations by writing variables and operators as a dimen- 

sional constant times a non-dimensional variable or operator as follows, 

v* E (L*AR*)v 

t, G (E1’22ft*)-’ t 

r. E L,r 

2, zt L,ze, 

bP* = (2%po,L:AC)Sp 

b* = (2R,po,LAfL/g.)Q 

Ps* = PO* ps 

v, E (l/L*)V 

where pot is a fiducial value for the equilibrium density. We also introduce the di- 

mensionless viscosity, or Ekman number, 

E=V*. 
2R, L: 

(7) 
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The Navier-Stokes equation for the perturbations is now 

912 g+e,xv= -+5!ip - hpe, + EV2v, 
Ps 

or in terms of the individual cylindrical components, 

w 

6P E112g = -Ldjj, _ _ + EV2w, 
Pa ps 

where (u, vu, w) are the velocities in the (T, 8, z) directions. We need two more equa- 

tions in order to complete the formulation of the problem, an equation of state and 

the continuity equation; 

We describe the fluid in terms of the pressure and the concentrations of its con- 

stituent elements. Within the context of neutron stars these elements are mainly 

electrons, protons and neutrons. The equation of state then relates the density to 

these quantities, p* = p.(p., I$) where x is the concentration of the i-th particle 

species’. 

The nature of the restoring force and the corresponding Brunt-VGZi, frequency 

is most readily calculated in the Lagrangian, as opposed to the Eulerian, formulation 

of the perturbations. We use Sq, for an Eulerian perturbation of a quantity Q., the 

difference between the actual and non-perturbed values of that quantity at a given 

point in space and time. A Lagrangian perturbation Aq, describes the change from 

the non-perturbed value an element of fluid experiences as it travels from one point 

‘In the core of an equilibrium neutron star the Yi are the concentrations that minimize the free 
energy through nuclear and weak interaction reactions. In the perturbations considered here, the 
fluctuation time scales are short compared to those for the weak interactions to adjust the ratio of 
neutrons to proton. The values of the Yi can thus be considered as fixed properties of the matter. 
If the equilibrium values of Yi give a stable stratification, buoyant forces will cause perturbations to . . . . . . . 
oscillate with the Brunt-Vaisala frequency. 
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to another. The two pertubations are related by a displacement vector field, cI, 

f&l* = bq* + t, - v*qo*, (12) . 

where qO.(r) is the non-perturbed quantity. The displacement vector field t8 is related 

to the velocity by, . . 

v* a[ =- 
at, *- 

In non-dimensional notation t, = (L,A&/2R,) 5 and 

v = E’12$. 

(13) 

(14 

To relate the density and pressure perturbations, consider a fluid displacement in 

which some quantity Y is held constant i.e. AY = 0. The Lagrangian perturbations 

Ap. and Ap. are then related by 

. 
= -&AP.. 

l 

(15) 

If the fluid is displaced adiabatically so that the entropy and composition are fixed, 

then cy, is the usual sound speed. We characterizes the equilibrium relationship 

.between the density and the pressure, by 

~Ps*la~* dp, 

( 1 

1 
aps*/az* = ap, eq = c”,*’ 

Notice that the equilibrium condition, 

a 
ZPS. = --Ps*g*, * 

gives 
1 i a -1 a -1 a 

-= 
c&* 

---ps* 
ps*g* dz* 

= --lnp,, = -- 
g* a%* 9. L* dz 

ln ps. 

With (12)-( 16) we can relate Sp, and Sp,: 

6~. = Apt - [*. vp,, 

= 
+p*+ (&-$..9.6*, CY* 

w-9 

(17) 

(19 

(1% 

(20) 



with &. the z-component of.<,. Once again, non-dimensionalizing we obtain, 

sp= (~)6p+(~)p.L~.v6p+N2p,EI. 

where the Brunt-ViGi,l~ frequency N, is 

(21) 

(22) 

and the two dimensionless parameters KC~ F g.L./c$, and N = N./2R, are the 

“constant-Y compressibility” and the normalized Brunt-Vaisala frequency, respec- 

tively. In previous studies KC~ was assumed to be negligible, but in self gravitating 

astronomical bodies KY can be of order unity or much larger. Returning to our ex- 

ample of the neutron star, for instance, we can estimate the size of KY. Using the 

values g. M 1014cm/sec?, L, x 106cm and cy, x 10gcm/sec (Epstein 1988), we obtain 
. ._ 

KY x 102. N characterizes the influence of density srtatification on Ekman pumping. 

The final equation is the continuity equation for the perturbations, 

AP- - = -V**[* 
Ps- 

%,* = -vr* * &* - jy-. * 
With (12), th e continuity equation becomes, 

b* 
SP* + 55. z 

at** 

* 
+ Ps*Vr* - 6,. + ps*at = 0. 

* 

Using (16) and (20), and taking the time derivative of (25), we get 

l 86 -9. dW* 
-- p, 
ps*c;* at, 

-y-w* + - + v,, - u* = 0. 
CY* dz, 

In non-dimensionalized units this is 

(23) 

(24) 

(25) 

(26) 
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where we have introduced the dimensionless angular velocity, 

We can now rearrange the complete set of perturbation equations in a more con- 

venient form. We use (21) to eliminate Sp in (11) and take the time derivative to 

obtain, 

We use 

(30) 

with (18), to change (29) to 

- = -N=w - E112;;F - ,9/2(ny _ &6p + E~/=v=$~. 
at ps s 

(31) 

where the “equilibrium compressibility” is 

(32) 

Since the constant-Y and equilibrium compressibilities are comparable, we write 

AK = IC,~ - IE~ = 
N=L, 
* < 1. (33) 

9. 

The variable 6p only occurs in the combination Sp/p,: so we define 6P E 6p/ps. The 

final equations are now 

a E’f=eu _ v - 
at 

--$,,.E(V=-;ti,. (34) 

E11Z~v+u=E(V2--$ (35) 

Ea 
=W 

- = -N=w - E’i=-$&‘+ E’i=+ + E3f2V2$W. at= (36) 

7 



a 
E1/=f-2=-$P 

a 
-lcyw+-w+ 

dz 
~-&l) = 0. (37) 

Note the harmonic restoring force provided by the Briint-Vaisala term in (36). 

The above’ four equations, (34)-( 37)) d escribe the evolution of the four unknowns, v 

and SP. We have dimensionless parameters, E, N’, AK, KY and 0. In order to reduce 

the parameter space we consider only the slow rotation limit, R << 1. Furthermore, 

since AK << 1, we will not consider this term in what follows. Both 0 and AK are 

easily included in the general solution, but we have found that they have little effect 

on the numerical results. 

The presence of the compressibility ny distinguishes this set of equations from 

earlier studies (Walin 1969; Sakurai 1969; Clark et al. 1971). Previous studies chose 

to emphasize the effects of temperature on the density of the fluid. Specifically, the 

density was considered .a function of the temperature and the stratification was a 

result of a temperature gradient which was imposed by the boundary conditions. 

The dynamical significance of the stratification and Brunt-V8isZi frequency arose 

through the effects of temperature diffusion and the heat equation. This approach 

is not appropriate to the astrophysical cases with which we are primarily concerned. 

In neutron stars, for example, thermal effects have a negligible result on the fluid 

dynamics, whereas compressibility is quite significant. We, therefore, focus on the 

dependence on the equation of state. 

. 2.2 Boundary values and initial conditions 

To obtain a unique solution to (34)-(3i). we need to specify both the boundary 

and initial conditions to our problem. There are, in essence, two approaches to 

take at this point. The most complete method is to state that initially the fluid 

rotates uniformly with the cylinder, and solve for the behaviour of the fluid after the 

angular velocity of the cylinder changes with the Laplace transformation technique 
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(Greenspan & Howard 1963). A simpler, and more physically elucidating approach, 

although less rigorous, used by other researchers in the field (Walin 1969; Sakurai 

1969; Barcilon & Pedlosky 1967) entails recognizing that different physical processes 

take place on widely different time scales in different regions of the fluid. We will 

follow this latter approach. 

If the Ekman number E, or dimensionless viscosity, is sufficiently small, the be- 

haviour of the fluid following an abrupt change in rotation rate of the container can be 

viewed as three distinct physical processes which occur on timescales Q:‘. J?Z-*/~O,’ 

and E-‘0;‘. The most rapid process is the formation of a viscous boundary layer. 

Following the impulsive change of rotation of the cylinder, a viscous Rayleigh shear 

layer forms on the upper and lower surfaces in a time scale on the order of a rotation 

time (tb. M a;‘). Within th is region the gradient in the azimuthal velocity results 

in an imbalance between the centrifugal and pressure gradient forces causing fluid 

to flow radially. This radial flow in the boundary layer establishes a secondary flow 

where fluid in the interior is pulled into the boundary layer to replace the flow in the 

Ekman layer, creating an opposing radial flow in the interior fluid that satisfies conti- 

nuity requirements. This Ekman pumping spins the interior of the fluid up in a time 

scale of order E -li2fl-l. With our choice of dimensionless variables this corresponds f 

to a dimensionless time, tE X 1. Finally, residual oscillations decay in the viscous 

diffusion time t,, M EmlR;‘. 

Since the principal goal of this investigation is to understand the effects of the 

stratification and compressibility on the Ekman pumping in the interior of the fluid, 

we expand (34)-( 37) in powers of El;’ and isolate the equations relating to Ekman 

pumping. The initial velocity distribution for the Ekman pumping equation is equiv- 

alent to the final velocity distribution of the boundary layer which forms during the 

first phase. Following Walin( 1969), we formulate the boundary condition in terms of 
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the continuity of the velocity perpendicular to the Ekman boundary just outside the 

boundary layer, 

.w(z =*1> = 7 $(V x v)= w 

E’/= 1 d 
= rJZ;~(‘“). (39) 

The boundary condition on the sidewalls at I‘, is that the radial velocity goes to zero, 

i.e. u(rC) = 0. 

It is critical to the dynamics of Ekman pumping that the vertical velocity at the 

boundary layer is O(E”‘). This standard result (see, e.g. Pedlosky 1979) can be 

understood by scaling arguments. The imbalance between the centrifugal forces and 

pressure gradient forces in the boundary layer drives the Ekman pumping process. 

The thickness X of thi: boundary layer is 0( El/=) since the viscous terms in the 

dimensionless Navier-Stokes equation is EV2 x E/X2 = O(1). The mass flux within 

the boundary layer is hi oc A = O(E1i2). 
. 

Th e net mass flux M, o( w perpendicular 

to the boundary layer is of the same order as hi giving w = O(E’/=). 

3 Solutions 

To solve (34)-(37) perturbatively we expand each fluid variable q as a series q = 

qo + E”=ql+ Eqz + - - -. Collecting terms of a given power of El/=, we obtain a set of 

equations governing each order in the expansion. 

We find that the O(1) equations are, 

vo = -$PO 

ug = 0 

WI-J = 0 

(40) 

(41) 

(42) 
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- KYWO + $wo + ~~(ruo) = 0, (43) 

and the 0(E’/2) equations are, 
- 

Vl (44) 

d 
at”” = -ul (45) 

dd 
N2w1 = ----&PO 

dz at 

- KyWl+ ;w, + $111) = 0. 
We define 4 E -lXPo/&, so that (40) and (45) become 

(-26) 

(47) 

u1 = 

and (46) and (47) are now, respectively, 
_-- 

N2wl = $5 

(48) 

(49) 

Assuming N2 varies slowly over z, we neglect its derivatives and simplify (50) to 

a2 
-+K~~~+N~~~ 
az2 (51) 

After taking the time derivative, the boundary condition, (39), is 

(52) 

By setting 4 =- Z(z) R(r) T(t), (51) becomes, 

(53; 

The solutions to the spatial functions are 

2 = A$+’ + BeP-” (54) 

R = Jo(b), (*55) 
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where 

& = f (KY f (tcy2 + 4k2N2)9 

The symmetry of the boundary condition, wr(z = 0) = 0, relates A and B: 

P- 
A = -PB- + (57) 

The constant B is arbitrary, and we choose it so that Z(1) = 1. This leads to 

(58) 

The possible values of k are determined by the boundary condition at the sidewall 

at T = T,, i.e. or = 0. From (48) and (55) we see that this condition cor- 

responds to Jr(kmrc) = 0 for m = 0, 1,2,. . . . The first zeroes of Jr are Ic,r, = 

0, 3.8317... , 7.0156.. .: The solution k,,, = 0 has v = 0 everywhere and is of no 

interest. 

We utilize the boundary condition to determine the time dependence of 4. Putting 

our solution for R and 2 into (39), we obtain the differential equation, 

-k2N2 Z(1) T 

a--- $1) ’ 
(59) 

whose solution is, 

T(t) = ewwf, (60) 

where, 

w = 5 (A@+@+ + B/h?-)-*, (61) 

with A and B defined as above. 

There are two interesting limiting cases. The first is that of no stratification 

N + 0; the second is that of an incompressible fluid KY + 0. Let us consider the 

first of these which gives, 

P+=Ky (1+%) (63) 
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B=l+ 

A 
k2 N2 em 
KY2 

(64) 

(65) 

Equation (66) shows that for large compressibilities the Ekman spin-up time scale w-l 

grows exponentially with KY. The second limiting case, ny -+ 0, gives ,& z fk,N 

and 
k, N cash k,.,, N 

w M &sinh kmN * (67) 

This matches the KY =. 0, N # 0 solution which was obtained by Walin (1969). 

We are now in a position to write the complete solution for the quantities C$ and 

vo; 

4 = mFl CmZm(z)Jo( k,r)e+‘m*. W-9 
= 

The velocity, ~0, is found from the relationship, 

$4 = -$Jo, (69) 

which gives, 

v0(f, -0) = - C wm m O” LC Zm(z)Jl(kmr)e-Wmt + v,(r, z). 
m=l 

(70) 

The last term represents the final velocity due to Ekman pumping. If we take the 

frame of reference as that rotating with the cylinder, the final velocity at the boundary 

of the interior fluid is given by 

V,(T, % = f :l) = 0 (7 1) 
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v,(r,, 2) = 0. (72) 

We determine Cm from the initial state of the fluid, which we choose as depending 

only on the radial coordinate, 

vO(r,z,t = 0) = --r = - C - O” km’, Jl(kmr) 
m=l wm 

(73) 

The coefficients, given by the standard equation for a .Fourier-Bessel series, are 

kmcm 2 

- = k,J2(k,)’ w m 
(‘74) 

and the final velocity is 

v,(r,z) = -2 2 
1 

m=l kmJ2(km) 
Jl(kmr> [l - zrn(z)I 7 (75) 

where we have chosen ri = 1 (rc* = L-). 

4 Discussion 

The time dependence of the Ekman pumping process is exponential with characteristic 

time l/w. We plot the value of w as a function of km N in figure 1 for different values 

of the parameter KY. Larger N, corresponding to greater density stratification gives 

larger w and reduced characteristic time. That is, a strongly stratified fluid spins up 

much quicker than a non-stratified fluid. On the other hand, an increased value of 

the compressibility KY slows the pumping process for a given km N. The spin-up time 

W -* decreases with increased stratification because stratification isolates much of the 

fluid from the pumping process. 
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Figure 1. The spin-up characteristic time, w, as a function of C;,iV for varying values 

of KY. 

Figures 2 and 3 show that the rotation state at the end of the Ekman pumping 

stage is not that of a solid body. The ordinate Z(r) is proportional to the final 

azimuthal velocity, with 2 = 1 being the largest possible spin-up. Larger values of 

k,N leave more of the internal fluid unaffected by the Ekman pumping process. In 

contrast, in a homogeneous fluid, N = 0, Ekman pumping brings the entire fluid to 

an angular velocity equal to that of the boundary. The compressibility KY further 

decreases the amount of pumped fluid, as we can see by comparing figure 2, for 

KY = 0, with figure 3, for KY = 10. 

Figure 2. The final azimuthal velocity as a function of depth for an arbitrary value of 
the radius. A value of 2 = 1 is complete spin-up, while 2 = 0 is no spin-up, with KY = 0. 

Figure 3. As in figure 2, but with KY = 10. 

Compressibility thus decreases the efficacy of Ekman. pumping both by lengthening 

the spin-up time and by decreasing the amount of affected fluid. To convey a clearer 

picture of how strong the effect of ICY is, we plot in figure 4 the final angular velocity 

of the fluid at its central (z = 0) layer as a function of k,N for different values of ICY. 
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Though there is little change between ICY = 0 and KY = 1, the internal final angular 

velocity is strongly suppressed as KY increases to 10. 

Figure 4. The final velocity of the central layer of the fluid (z = 0). as a function of 

k,N, for different values of riy . 

In figure 5 we plot the average spin-up of the fluid (2) as a function of the 

normalized Brunt-V%Zi, frequency N for the two lowest order modes, kl and k2, 

for r, = 1 (i.e. rc* = ~5,). We see that even modest values of N prevent most of the . 

fluid from spinning up during the Ekman pumping phase. The state of the fluid after 

a time scale of t * M E-1/2Q;1 is, thus, one of non-uniform rotation. The process of 

viscous diffusion, which operates in a time t,, x E-‘0,’ eventually brings the fluid 

into solid-body rotation. 

Figure 5. The average final spin-up of the fluid as a function of the stratification. The 

top two curves (solid and dashed lines) were calculated for an incompressible fluid, KY = 0, 

while for the bottom two curves (dotted and dash-dotted lines) 6.y = 10. With a highly 

compressible fluid (my = 10) even very small values of N result in very little spin-up from 

Ekman pumping. 
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The case of spherical geometry was studied by Clark et al! (1971), where they 

found that the solution for a sphere is qualitatively similar to that of the cylinder. 

That is, the final state of non-uniform rotation also exists in the sphere, but the 

geometry of the layer that gets Ekman pumped is modified. 

We find a particularly interesting application of these phenomena is the response 

of the interior of a rotating neutron star to a glitch, a sudden small change in the 

rotational velocity. Within the star there exists a significant stratification due to the 

strong gravitational field and the equilibrium concentrations of protons, neutrons and 

electrons. Reisenegger & Goldreich (1992) estimated a value of N, x 500~~’ for a 

neutron star. For a canonical value of R, M loos-‘, we obtain N z 2.5. This is large 

enough to have a significant effect on the length of time the core of the star needs to 

come into rotational equilibrium. We explore these issues in a forthcoming paper. 
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